

Vocabulary:

- Matter: Anything that has mass and takes up space.
- Atom: the smallest particle of matter.
- Element: A pure substance made up of only one type of atom.

Vocabulary:

• Subatomic Particle: Smaller particles that make up an atom.

- Proton = positive (+) charge
- Neutron = no charge
- Electron = negative (-) charge

Atomic Model:

- Protons and Neutrons are found at the center (nucleus) of the atom
- Electrons are found outside the nucleus in "shells"
 - 1st shell holds up to 2 e-
 - 2nd shell holds up to 8 e-
 - 3rd shell holds up to 18 e-

BOHR MODEL:

- Protons and Neutrons are found at the center (nucleus) of the atom
- Electrons are found outside the nucleus in "shells"
 - 1st shell holds up to 2 e-
 - 2nd shell holds up to 8 e-
 - 3rd shell holds up to 18 e-

Vocabulary:

- Compound: a chemical made up of two or more elements.
- Molecule: the smallest piece of a compound.
- Chemical Formula: describes the chemical makeup of an element or compound
- Reactants: chemicals that react together.
- Products: substances that form from a chemical reaction.
- Chemical Equation: a written explanation for a chemical reaction.

Chemical Formulas:

- How many atoms of Carbon?1
- •How many atoms of Oxygen?
- •2
- Carbon Dioxide

Chemical Formulas:

$C_6H_{12}O_6$

- Carbon = 6 • Hydrogen = 12
- Oxygen = 6 Glucose (Sugar)

Chemical Reactions:

- During a chemical reaction, atoms cannot be created or destroyed.
- Atoms are rearranged during chemical reactions.

1. What elements are in the following compound?

 $C_8H_{10}N_4O_2$

2. How many total atoms are in the compound?

$\frac{\text{Chemical Equations:}}{\text{Mg + O}_2 \rightarrow \text{MgO}}$

- Read: Magnesium plus oxygen react to form magnesium oxide.
- In order to "solve" a chemical equation, we must "balance" it.
- The correct chemicals are shown, but not in the correct proportion.

Chemical Equations: Mg + $O_2 \rightarrow MgO$ • We balance the equation by

- We balance the equation by adding "coefficients" in front of the formulas.
- The coefficient tells us how many molecules of each chemical are in the reaction.

$\frac{\text{Chemical Equations:}}{\text{Mg + O}_2 \rightarrow \text{MgO}}$

 In order to "balance" the equation, we have to count the atoms on both sides of the equation.

PRACTICE

•Try it out!

• Balance the following equation.

$$\underline{H}_2 + \underline{O}_2 \rightarrow \underline{H}_2 O$$

Chemical Reactions:

Atoms are not **CREATED** or **DESTROYED** during a chemical reaction. Scientists know that there must be the **SAME** number of atoms on each **SIDE** of the **EQUATION**.

To balance the chemical equation, you must add COEFFICIENTS in front of the chemical formulas in the equation. You cannot ADD or CHANGE subscripts:

Chemical Formulas

- Carbon is written first if it is present in the molecule.
- Nitrogen is written before Hydrogen.
- Oxygen is written at the end of the formula.
- Hydrogen is written directly after Carbon and Nitrogen if both are present.

Chemical Bonding

- Hydrogen can make 1 bond (1 V.E.)
- Oxygen can make 2 bonds (6 V.E.)
- Nitrogen can make 3 bonds (5 V.E.)
- Carbon can make 4 bonds (4 V.E.)

 H_2C

Building Models

Lab #21

STATES OF MATTER

Consider the following:

×What is matter?

× What is matter made up of?

× What are the three main states of matter?

VOCABULARY:

- × SOLID: Matter with a definite volume and shape.
- × LIQUID: Matter with a definite volume, but no definite shape.
- × GAS: Matter with no definite volume or shape.

Vocabulary:

Temperature: a measure of the average kinetic energy (KE) of particles of matter

Thermal energy: the total amount, or sum, of kinetic energy in a substance; it depends on temp. and total # of particles

Vocabulary:

Heat: the thermal energy transferred from one object to another due to the temperature difference between the objects.

Block 1:

PRE-LAB Sectio

× Heat Transfer:

so?

 $\boldsymbol{\times}$ Describe the heat transfer that would occur if you put Block 2 into a freezer, which has a temperature of $0^{\circ}C$. Why do you think so?

Hypothesis:

What do you think will happen to the water and food coloring inside the beaker when it is set on the hot plate?

Observations:

What happens to the water and food coloring? Describe and/or draw your observations.

Conclusion

× Explain:× Why did this happen?

LAB #22

CONDUCTION

TABLE OF CONTENTS

22. Conduction (pg #)

Jackle of Contents 1 Problem Scoping Lesson - Differ + Lew (pg.) 2 Temperature + Heat Transfer (pg. #) 3 Conduction (pg. #)

Vocabulary:

Conduction: The transfer of heat through solids by collisions of particles in contact with one another.

Section 1:

Feeling Temperature:

- 1. What two objects did you feel?
- 2. What did they feel like? (which one felt colder and which felt warmer?)
- 3. Why do metals feel colder than items such as plastic, wood, or paper?

Hypothesis:

 \times What are the two materials your team received?

PREDICT: Two ice cubes will be placed on top of the materials. Which ice cube will melt first?

Observations:

OBSERVE: Place one ice cube on top of each material. Record your observations.

Data:

COLLECT DATA: Fill out the data table with the whole class's data.

TEAM	Material which melted ice first
1	
2	
3	
4	
5	
6	
7	

Data:

Draw a diagram showing each material with an ice cube on top. On the diagram, indicate the direction of heat transfer using arrows. Also, note which material transferred heat more quickly.

Conclusion:

INTRODUCE: What was the purpose of this investigation?

ANALYZE DATA: What do you notice about the materials that melted ice more quickly?

EXPLAIN: Why did the ice melt faster on certain surfaces?

Vocabulary:

Conductor: a material that transfers heat by the process of conduction easily and quickly.

Vocabulary:

Insulator: a material that slows down the transfer of heat by the process of conduction. Examples include plastics, paper, and wood.

Consider the following:

- × What is radiation?
- × How is radiation different from conduction and convection?
- × What are some sources of radiation?

Vocabulary:

Radiation

The transfer of energy in the form of waves or particles (light) through space or through a material.

Focus Question:

• How can we find out what two substances are in the mystery mixture?

Hypothesis: "Write your answer here"

Observations:

Chemical Name	Chemical Formula	Common Name	Observations	Uses
Ascorbic Acid				
Calcium Carbonate				
Calcium Chloride				
Citric Acid				
Magnesium Sulfate				
Sodium Bicarbonate				
Sodium Carbonate				
Sodium Chloride				
Sucrose				

Chemical Name	Chemical Formula	Common Name	Observations	Uses
Ascorbic Acid				Supplement for tissue growth and repair
Calcium Carbonate				
Calcium Chloride				
Citric Acid				
Magnesium Sulfate				
Sodium Bicarbonate				
Sodium Carbonate				
Sodium Chloride				
Sucrose				

Chemical Name	Chemical Formula	Common Name	Observations	Uses
Ascorbic Acid				Supplement for tissue growth and repair
Calcium Carbonate				Used as chalk, found in bones, shells
Calcium Chloride				
Citric Acid				
Magnesium Sulfate				
Sodium Bicarbonate				
Sodium Carbonate				
Sodium Chloride				
Sucrose				

Chemical Name	Chemical Formula	Common Name	Observations	Uses
Ascorbic Acid				Supplement for tissue growth and repair
Calcium Carbonate				Used as chalk, found in bones, shells
Calcium Chloride				Used to melt ice and make pickles
Citric Acid				
Magnesium Sulfate				
Sodium Bicarbonate				
Sodium Carbonate				
Sodium Chloride				
Sucrose				

Chemical Name	Chemical Formula	Common Name	Observations	Uses
Ascorbic Acid				Supplement for tissue growth and repair
Calcium Carbonate				Used as chalk, found in bones, shells
Calcium Chloride				Used to melt ice and make pickles
Citric Acid		"Sour Salt"		Used to preserve food, make sour candy.
Magnesium Sulfate				
Sodium Bicarbonate				
Sodium Carbonate				
Sodium Chloride				
Sucrose				

Chemical Name	Chemical Formula	Common Name	Observations	Uses
Ascorbic Acid				Supplement for tissue growth and repair
Calcium Carbonate				Used as chalk, found in bones, shells
Calcium Chloride				Used to melt ice and make pickles
Citric Acid		"Sour Salt"		Used to preserve food, make sour candy.
Magnesium Sulfate				Used as a laxative, found in fertilizers/detergents
Sodium Bicarbonate				
Sodium Carbonate				
Sodium Chloride				
Sucrose				

Chemical Name	Chemical Formula	Common Name	Observations	Uses
Ascorbic Acid				Supplement for tissue growth and repair
Calcium Carbonate				Used as chalk, found in bones, shells
Calcium Chloride				Used to melt ice and make pickles
Citric Acid		"Sour Salt"		Used to preserve food, make sour candy.
Magnesium Sulfate				Used as a laxative, found in fertilizers/detergents
Sodium Bicarbonate				Used in baking, found in toothpaste
Sodium Carbonate				
Sodium Chloride				
Sucrose				

Chemical Name	Chemical Formula	Common Name	Observations	Uses
Ascorbic Acid				Supplement for tissue growth and repair
Calcium Carbonate				Used as chalk, found in bones, shells
Calcium Chloride				Used to melt ice and make pickles
Citric Acid		"Sour Salt"		Used to preserve food, make sour candy.
Magnesium Sulfate				Used as a laxative, found in fertilizers/detergents
Sodium Bicarbonate				Used in baking, found in toothpaste
Sodium Carbonate				Used to make glass, soaps, and paper.
Sodium Chloride				
Sucrose				

Chemical Name	Chemical Formula	Common Name	Observations	Uses
Ascorbic Acid				Supplement for tissue growth and repair
Calcium Carbonate				Used as chalk, found in bones, shells
Calcium Chloride				Used to melt ice and make pickles
Citric Acid		"Sour Salt"		Used to preserve food, make sour candy.
Magnesium Sulfate				Used as a laxative, found in fertilizers/detergents
Sodium Bicarbonate				Used in baking, found in toothpaste
Sodium Carbonate				Used to make glass, soaps, and paper.
Sodium Chloride				Used as a food preservative
Sucrose				Sweetener, source of energy for humans

Mystery Mixture: OBSERVATION:

- 1. Which two substances do you think are in the mystery mixture?
- 2. What could you do to get more information?

Procedure:

- Add 1 scoop of <u>two</u> different substances into the mixing tray.
- Add a few drops of water.
- Observe for a reaction.
- Record data for any mixture that produces "fizzing".

Mystery Mixture Summary

Substance Combinations that Produced Fizzing

Mystery Mixture

Mystery Mixture Summary

Substance Combinations that Produced Fizzing

Mystery Mixture

Ascorbic Acid + Sodium Bicarbonate

Ascorbic Acid + Calcium Carbonate

Ascorbic Acid + Sodium Carbonate

Citric Acid + Sodium Bicarbonate

Citric Acid + Calcium Carbonate Citric Acid + Sodium Carbonate

Calcium Chloride + Sodium Bicarbonate

Day 2 Testing:

Identify ALL combinations that produced bubbles: Attach second data table for today's data.

Day 3 & 4	Well	Substances	Description of fizzing	Other observations	Large-scale reactions	
Testing	1	Ascorbic acid + calcium carbonate C ₆ H ₈ O ₆ + CaCO ₃				
	2	Ascorbic acid + sodium bicarbonate C ₆ H ₈ O ₆ + NaHCO ₃				
1) Place all dry chemicals in	3	Ascorbic acid + sodium carbonate $C_6H_8O_6 + Na_2CO_3$				
wells first.	4	Calcium chloride + sodium bicarbonate CaCl ₂ + NaHCO ₃				
	5	Citric acid + calcium carbonate C ₆ H ₈ O ₇ + CaCO ₃				
2) React with 3 drops of water	6	Citric acid + sodium bicarbonate C ₆ H ₈ O ₇ + NaHCO ₃				
one after the	7	Citric acid + sodium carbonate C ₆ H ₈ O ₇ + Na ₂ CO ₃				
other.	8	Mystery mixture				

Analysis:

- 1. What happened when we added water to the mixture?
- 2. What causes the bubbling and fizzing?
- 3. Why does the mixture eventually stop fizzing?

Results:

- 1. Which two substances do you THINK make up the mystery mixture?
- 2. What evidence do you have to support your claim?

Results:

- 3. Why did we select these seven combinations to retest?
- 4. What was left in the well trays after the reaction?
- 5. What gas do you believe was produced by the mystery mixture?

Air Is Matter	
#25	

Prelab Questions:

- 1. Make a list of the gasses you know about or have heard about.
- 2. Everything is made of elements. What elements could be in the gas that forms when baking soda and citric acid react?

Prelab Questions:

- 3. What is air?
- 4. What is matter?

Focus Question:

Is air matter? How do you know?

Hypothesis:

"Write your answer here"

Vocabulary:

- Air: a mixture of gasses. Air is 78% $N_2\,,\,21\%\,\,O_2\,,\,and\,1\%$ trace gasses.
- Compress: to force air into a smaller space.
- Expand: to take up more space.

Vocabulary:

• Air Pressure: the force exerted on the walls of a container by a gas.

Materials

- 1 syringe
- 1 tube
- 1 clamp
- 1 bubble wrap bubble

Observations:

Part 1: Individual

Part 2: Group

Analysis:

- What happens to the particles of air in the syringe when you push on the plunger?
- 2. What happens to the air particles in the bubble when you pull up on the plunger?

Analysis:

- 3. Are there more air particles in the bubble when it is compressed or expanded?
- 4. What happens to air particles when the air is expanded?

Conclusion:

- Explain what you did for this investigation
- How do you know that air takes up space? What is your evidence?
- Explain what you now understand about gas particles. (What happens to a gas when it is compressed? Expanded?)

• Gas: a phase of matter that has no definite shape or volume. Particles of gas fly independently through space.

Focus Question:

• How can the gas produced in a chemical reaction be studied?

<u>Hypothesis:</u>

"Write your answer here"

Procedure

- a. Get a basin of group materials for your group.
- b. Get a bottle-and-syringe system for each pair.
- c. Put on protective eyewear.
- d. Make a stock citric acid solution. Dissolve one level, 2-mL spoon of citric acid in 100 mL of water.
- e. Put one level, 2-mL spoon of sodium bicarbonate into the bottle. Twist the stopper into the bottle.
- f. Take up exactly 5 mL of citric acid solution in the syringe. Insert the tip of the syringe into the hole in the stopper.
- g. Push the solution into the bottle. Don't remove the syringe. Observe and record.
- Dump the used experiment and conduct three more trials. It is *not* necessary to wash out the bottle between trials.

	/olume of			
Trial 1	Trial 2	Trial 3	Trial 4	Average
CLASS A	VERAGE:			
CLASS A	VERAGE:_			
CLASS A	VERAGE:_			-
CLASS A	VERAGE:_			

DATA: I	Volume of	Gas Prod	luced (mi	L)
Trial 1	Trial 2	Trial 3	Trial 4	Average
CLASS A	VERAGE:_			-
CLASS A	VERAGE:_			-

FINAL AVERAGE:	

 \mathbf{r}

Analysis:

- 1. What happened to the syringe plunger during the reaction between citric acid and sodium bicarbonate?
- 2. What caused that to happen?

Analysis:

- 3. Why is a syringe more useful than a balloon to conduct this experiment?
- 4. What errors might have occurred while gathering data?

Analysis:

5. What do you think might happen if you doubled the amount of either the citric acid solution or the sodium bicarbonate powder? Why do you think so?

CONCLUSION:

Revisit your focus question, *"How can the gas produced in a chemical reaction be studied?*

- Explain what we did in this activity.
- Explain how you studied the gas produced.
- Explain what you learned by completing the activity.

Kinetic Energy	
#27	

- Contraction: the reduction of volume of a sample of matter as a result of cooling.
- Kinetic Energy: the energy of motion

Focus Question:

• What happens to particles in liquid when the liquid is heated and cooled?

Hypothesis: "Write your answer here"

Procedures:

• Your task is to build and use a bottle system to explore what happens to water when it is heated and cooled.

Analysis:

1. How does a real liquid thermometer work?

Conclusion:

- Explain how you built the bottle system.
- Explain your results. What happened when you placed the bottle in cold and warm water?
- Explain what you learned about the expansion and contraction of liquids.

Calories	
#28	

- 100mL of water at 20°C is mixed with 100mL of water at 80°C.
- What is the final temperature of the water?

ANSWER = 50°C

Thermal Equalibrium:

When two substances in physical contact with each other exchange no heat energy. (temperature stabilizes)

- Temperature: a measure of the average kinetic energy.
- Heat: the transfer of thermal energy.
- calorie: the unit of heat in the metric system.

Equations:

- One calorie is the amount of heat needed to raise the temperature of 1 g of water 1°C.
- It takes 1 calorie of heat to raise the temperature of 1 g of water from 25°C to 26°C

Equations: $cal = m \times \Delta T$ $\Delta T = T_f - T_i$ cal = calories m = mass of water in g. ΔT = change of temperature. (will never be negative)

Equations: $T_{f} = \frac{T_{1} + T_{2}}{2}$ T = the final temperature after two

 T_f = the final temperature after two equal volumes of water are mixed.

ANALYSIS:

2. Compare the heat transfer from the hot water and the heat transfer to the cold water. What do you notice?

Conclusion:

- What was the purpose of this lab?
- Explain how we prepared the lab to collect data.
- Explain your data.
- What did you learn from completing the activity?

- Condensation: to change from a gas to a liquid.
- Deposition: to change from a gas to a solid.
- Evaporation: to change from a liquid to a gas.
- Freezing: to change from a liquid to a solid.

Vocabulary:

- Melting: to change from a solid to a liquid.
- Sublimation: to change from a solid to a gas.

Focus Question:

• What is the melting point of water? Can you change it?

Hypothesis:

"Write your answer here"

Procedure:

- **1.** Obtain you materials.
- 2. Place approximately 100g of ice in the plastic tub.
- 3. Record the mass and temperature of the ice.
- 4. Add 2 level scoops of your substance to the ice.
- 5. Stir and record the temperature of the ice after each 1 minute interval for 10 minutes

DATA:	TIME (min)	TEMPERATURE (°C)
Substance added:	1	
	2	
Mass of ice:	3	
	4	
	5	
Initial temp of ice:	6	
	7	
	8	
	9	
	10	

<u>DATA:</u>	
Substance	Lowest Temperature
Citric Acid	°C
Calcium Chloride	°C
Magnesium Sulfate	°C
Sodium Carbonate	°C
Sodium Chloride	°C
Sucrose	°C

Ascorbic Acid	°C
Calcium Carbonate	°C
Sodium Bicarbonate	°C
Sodium Tetraborate	°C

Analysis:

- 1. Which substance reached the lowest temperature?
- 2. Why does ice melt when salt is added, even though the temperature falls below 0°C?

Day 3: Prelab

- 1. How do you change the phase of water from a gas to a liquid?
- 2. How do you change the phase of water from a liquid into a solid?

<u>Day 3: D</u>)ata	/
Group	Observations	
Control		
Experimental		

Day 3: Hypothesis

What will happen to the cups in each group?

Day 3: Analysis

- 1. Why did water condense on the bottom of the cups?
- 2. What was different between the control and experimental group?
- 3. How were you able to freeze the condensation into ice?
- 4. Would the water on the outside of the cup freeze if we replaced the salt with calcium carbonate? (look back over your data)

Results

- 1. What does salt do to the melting point of ice?
- 2. Why was salt necessary to freeze the water inside the vial and on the outside of the plastic cup?
- 3. In terms of heat transfer, explain how the water was able to freeze.
- 4. In terms of kinetic energy (heat), describe the difference between water vapor, liquid water, and ice.

7-Habits

- Read pages 51 54 in the text. Stop at We Can Control Only One Thing.
- 2. Work on pages 52-53 in the Activity Guide.
- 3. Discuss pages 56-59 in the Ultimate Activity Guide

Solutions	
#30	

- Solution: a mixture formed when one substance dissolves in another
- **Dissolve:** to incorporate one substance uniformly into another substance at the particle level

Vocabulary:

- Solute: a substance that dissolves in a solvent to form a solution.
- Solvent: a substance in which a solute dissolves to form a solution

- •Soluble: capable of being dissolved
- Insoluble: not capable of being dissolved

Focus Question:

 Do all substances form solutions in water?

Hypothesis:

"Write your answer here"

PROCEDURE: Part 1

- Add 1 scoop of NaCl to a cup. Label the cup "NaCl"
- Add 1 scoop CaCO₃ to a cup. Label the cup "CaCO₃"
- Add 30mL of water to each cup. Stir the mixture

PROCEDURE: Part 2

- Label the other two cups "NaCl" and "CaCO₃".
- Run each mixture through the filter and record your observations of the filtrate.

- PROCEDURE: Part 3 Using a pipette, transfer a few drops of the NaCl filtrate into well #1 of the evaporating tray.
 - Use a second pipette to transfer a few drops of the $\rm CaCO_3$ filtrate into well #2 of the evaporating tray.
 - Label your tray with tape and a sharpie for tomorrow's observations.

	Before adding water:
CaCO ₃ + H ₂ O	After adding water:
NaCl +	Before adding water:
H₂O	After adding water:

ANALYSIS: Part 1

 \backslash

- 1. Did the $CaCO_3 + H_2O$ form a solution? What is your evidence?
- 2. Did the NaCl + H_2O form a solution? What is your evidence?

NaCl +	
Water	
CaCO ₃ +	
Water	

DATA: Part 3	
MIXTURE	EVAPORITE OBSERVATIONS
NaCl +	
Water	
CaCO ₃ +	
Water	

			_

ANALYSIS: Part 2-3

- 1. Were you able to separate any NaCl from the water using the filter? How do you know?
- Were you able to separate any CaCO₃ from the water using the filter? How do you know?

CONCLUSION:

- What was the goal of this lab?
- Explain the procedures of this lab. What did you do? How did you filter the solutions?
- Explain your results. Were you able to filter out the CaCO₃ from water? Were you able to filter out NaCl from water?
- Which of the two chemicals formed a solution with water? What is your evidence?

How Much Will Dissolve? #31

Purpose:

 The goal of this activity is to determine the solubility of NaCl and MgSO₄ in water.

Equation:

 $Solubility = \frac{Mass of Solute}{Mass of Solvent}$

Procedure: Part 1

- Add 100mL of water to cup using graduated cylinder.
- Take your cup to a scale.
- Using the pipette, get the mass of water to equal exactly 100.0g.
- Slowly add NaCl to the water and stir until you get it just to the point where no more will dissolve.
- Weigh the solution and record.

Analysis: Part 1

- 1. Subtract the mass of H_2O you started with from the mass of your NaCl solution. This is your mass of NaCl. Record in data table.
- 2. Find the solubility of NaCl in water by dividing the mass of NaCl by the mass of water. Your answer will be in g/mL.

 $Solubility = \frac{Mass of Solute}{Mass of Solvent}$

Procedure: Part 2

- Add 100mL of water to cup using graduated cylinder.
- Take your cup to a scale.
- Using the pipette, get the mass of water to equal exactly 100.0g.
- Slowly add MgSO₄ to the water and stir until you get it just to the point where no more will dissolve.
- Weigh the solution and record.

Mass of H ₂ O (mL)	Mass of MgSO₄ Solution (g)	Mass of MgSO₄ (g)	Solubility of MgSO₄ (g/mL)
100.0 mL			

Analysis: Part 2

- Subtract the mass of H2O you started with from the mass of your MgSO₄ solution. This is your mass of MgSO₄. Record in data table.
- Find the solubility of MgSO₄ in water by dividing the mass of MgSO₄ by the mass of water. Your answer will be in g/mL.

 $Solubility = \frac{Mass of Solute}{Mass of Solvent}$

CONCLUSION:

- What was the goal of this lab?
- Explain the procedures of this lab. What did you do?
- Explain how you determined the amount of solute that was able to dissolve in water.
- Which solute was more soluble in water? NaCl or MgSO₄? What is your evidence?

Reactions	
#32	

• What happens at the particle level during a chemical reaction?

Hypothesis:

"Write your answer here"

Chemical Reaction:

Evidence for a chemical reaction:

- Odor
- Color Change
- Gas Bubbles
- Smoke/Fire
- Precipitate Formation
- Temperature Change

Prelab

- 1. What will happen if I add a spoonful of sucrose to a cup of water? Is it still sucrose?
- 2. What if I melt the sucrose. Is it still sucrose?
- 3. When sucrose burns, is it still sucrose?

SAFETY

- 1. Use your own mouthpiece
- 2. Only exhale through the straw!
- 3. Wear eye protection
- 4. Wash hands when finished

OBSERVATIONS: Limewater

Describe the changes to the limewater you observed in the bottle:

OBSERVATIONS: Bromthymol Blue

Describe the changes to the bromthymol blue you observed in the bottle:

Analysis

- Starting substances change into new substances during chemical reactions. Did a chemical reaction occur in this investigation? How do you know?
- 2. What happened when your exhaled breath was blown through limewater?

Analysis

- 3. What happened when your exhaled breath was blown through bromthymol blue?
- 4. What in your exhaled breath reacted with the limewater and the bromthymol blue?

Conclusion

- What was the purpose of this investigation?
- Explain the setup of this lab, and the steps you took to collect your data.
- What does your data show?
- What did you learn by completing this lab?