

Formation Theory:

20.

oTheories of the origin of the solar system rely on direct observation and data from probes.

Formation Theory:

FORMATION OF THE SOLAR
SYSTEM - Solar Nebula Theory
oScientific theories must explain observed facts, such as the shape of the solar system, differences among planets, and the nature of the oldest planetary surfaces- asteroids, meteorites, and comets.

The Solar Nebula Theory

oThe Solar Nebula Theory is the theory most commonly held by scientists as to how our solar system formed.
olt explains that a planetary system forms from a huge cloud of gas and dust.

A Collapsing Interstellar Cloud:
oStars and planets form from interstellar clouds (Nebula), which exist in space between the stars.
o These clouds consist mostly of hydrogen and helium gas with traces of other elements and dust.

A Collapsing Interstellar Cloud:
olf rotating, the cloud spins faster as it contracts, for the same reason an ice skater spins faster as they pull in their arms.

Planetesimals:

oPlanetesimals are objects hundreds of kilometers in diameter.
oPlanetesimals are objects which collided together to form larger objects known as planets.

A Collapsing Interstellar Cloud:

-At first, the collapse of an interstellar cloud is slow, but it gradually accelerates and the cloud becomes much denser at its center.

Planetesimals:

Geocentric Model

- Polish scientist
- In 1543, suggested that the Sun was the center of the universe.
- The Earth and the other planets orbit around the Sun.
○ "Heliocentric Model"

Nicholas Copernicus

Tycho Brahe

o Danish Astronomer

- Designed and built accurate equipment to make accurate observations of planet' positions before the telescope was used in astronomy.

Tycho Brahe

- Lost his nose in a sword fight.
o Lived on his own island with a pet elk.
- Died of a ruptured bladder at a dinner party.

Johannes Kepler

o German Astronomer
o Used Brahe's data, he demonstrated that each planet orbits the Sun in an ellipse

- Kepler's first law of planetary motion.

Retrograde Motion

o Retrograde motion is the apparent backward movement of a planet.

- The search for an explanation of this motion motivated early astronomers for a better explanation for the design of the solar system.

Kepler's Laws

- The length of time it takes a planet to make one complete orbit around the Sun is called the orbital period = \mathbf{P}
- He noted that P was related to the distance of the planet to the Sun = a

$$
P^{2}=a^{3}
$$

Ellipse

- An ellipse is an oval shape that is centered on two points instead of a single point.
- Kepler demonstrated that each planet orbits the sun with an elliptical orbit, not a circular orbit.

Elliptical orbit

Astronomical Unit

Eccentricity

- The shape of a planet's elliptical orbit is defined by eccentricity.
- Eccentricity is the ratio of the distance between the focal points and the diameter of the orbit.

Newton's Law of Universal

 Gravitationo Newton first developed an understanding of gravity by observing falling objects.
o Newton's law of universal gravitation states that the mass of and the distance between two bodies determines the force between them.

Astronomical Unit

○ An astronomical unit (AU) is a unit used to measure distance within the solar system. 1 AU is the distance from the Sun to the Earth.

Gravity:

Universal Gravitation Equation

○ F = Force of Gravity between two objects (in Newtons, N)

- G = Universal Gravitation Constant

$$
\mathrm{G}=6.673 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

○ m_{1} and m_{2} are the masses of the two objects in kg
or = the distance between the two objects centers in meters.

Dividing in Scientific Notation

- To divide two numbers expressed in scientific notation, simply divide the numbers out front and subtract the exponents.

$$
\frac{n \times 10^{a}}{m \times 10^{b}}=\frac{n}{m} 10^{a-b}
$$

$$
\frac{6.2 \times 10^{6}}{3.1 \times 10^{3}}=\frac{6.2}{3.1} \times 10^{6-3}=2.0 \times 10^{3}
$$

Planetesimals:

oPlanetesimals are objects hundreds of kilometers in diameter.
o Planetesimals are objects which collided together to form larger objects known as planets.

Multiplying in Scientific Notation

- To multiply two numbers expressed in scientific notation, simply multiply the numbers out front and add the exponents.
$\bigcirc\left(n \times 10^{a}\right) \cdot\left(m \times 10^{b}\right)=(n \cdot m) \times 10^{a+b}$
Ex: $5.0 \times 10^{4} \cdot 3.0 \times 10^{3}=15 \times 10^{7}=1.5 \times 10^{8}$

Center of mass

Gas Giants Form

o The first large planet to develop was Jupiter.
o Jupiter increased in size through the merging of icy planetesimals that contained lighter elements.

- Saturn and the other gas giants could not become as large because Jupiter collected so much material.

Terrestrial Planets Form

o Planets also formed by the merging of planetesimals in the inner part of the main disk, by the Sun.

- These were composed of elements that resist vaporization.
o This is why the inner planets are rocky and dense.
o The inner planets did not develop satellites.

Debris

o Material that remained after the formation of planets and satellites is called debris.

- Thousands of asteroids have been detected between the orbits of Mars and Jupiter.
o This is debris that never formed planets because of the gravitational effect of Jupiter.

Solar System Soup Lab

o We will be using vermiculite and water to model the solar nebula theory.

- Vermiculite is a mineral used in gardening and for insulation.
- Toxic: Do not consume!

The Inner Planets

Scarps:

o Scarps are systems of cliffs, caused by the shrinking and cracking of a planet's crust

Mercury

- Orbit
- highly eccentric
- perihelion 46 million km

- aphelion it is 70 million km
- Mercury only rotates 1 and a half times at the end of it's orbit around the sun.
- This means that two mercury years = three mercury days.

Mercury

- Closest to sun
- Appears to travel fastest

- 8th largest (smallest)
- Thin atmosphere of oxygen and sodium atoms.
- Daytime Temp $=427$ degrees C
- Nighttime temp $=-173$ degrees C

Venus

- 2nd from Sun
- 6th largest
- brightest
- inferior planet

- shows phases when viewed from Earth
- Galileo's observed phases
- Copernicus used data to develop heliocentric theory.

Earth

- 3rd from the Sun
- Moon is $1 / 6$ mass of Earth
o period of rotation: 24 hours
o period of orbit: 365.25 days

Ceres (dwarf Planet)

o Largest known object in the asteroid belt
oSmallest of the 5 dwarf planets
o Ceres appears to have a rocky core and icy mantle, and may harbor an ocean of liquid water under its surface.

Gas Giant Planets:

o Very large planets made entirely of gas or liquid with a possible solid core.
o Jupiter, Saturn,
 Uranus, Neptune

Liquid Metallic Hydrogen

- A form of hydrogen that has properties of both a liquid and a metal.
o Only exists under very high pressure.
o Liquid metallic hydrogen is found at the core of Jupiter and Saturn, generating a magnetic field.

Belts and Zones

o Belts are low, warm, dark-colored clouds that sink, and zones are high, cool, light colored clouds that rise.
o This is what give Jupiter and Saturn their bands of alternating dark and light colors.

Jupiter

o Jupiter contains over 70\% of the mass in the solar system outside the Sun.

- It is about 11 times the radius and 330 times the mass of the earth.
O It is the first representative of the outer solar system.
- Unlike the inner planets, Jupiter is not a solid body, but instead is a ball of gas and liquid (mostly hydrogen and helium).

Saturn

- Saturn is a gas giant.
- It has strong surface winds ($500 \mathrm{~m} / \mathrm{sec}$).
- Saturn is less dense than water.
- Saturn's magnetic field is 20x less than Jupiter's, but its core rotation period (10.5 hours) is similar.

Saturn

o Saturn's Moons:

- Titan is the big one, and is larger than planet Mercury!
- Mimas has a huge crater.
- Epimetheus and Janus, just inside the orbit of Mimas, are continually exchanging orbits with one another in a "waltz" -- they are called the coorbital satellites.

Uranus

- Uranus has more moons (15) than any other planet except Jupiter (16) and Saturn (23)!
- Uranus rotates on its side.

Neptune

- The blue coloration of Neptune is probably due to the presence of methane
- Neptune has 13 moons

Pluto:

o Classified as a "Dwarf Planet".

- Has a long elliptical orbit.
- Made of rock and ice.
o Has an atmosphere of nitrogen, methane, and carbon monoxide.
- Smaller than Earth's moon.
- In synchronous orbit with its moon Charon.

Dwarf Planets

oA dwarf planet is an object that, due to its own gravity, is spherical in shape, orbits the Sun, is not a satellite, and has not cleared the area of its orbit of smaller debris.

Exoplanets

oAs of today, there are 1,827 confirmed exoplanets.
oThere are 4,604 exoplanet candidates.
017\% of stars are thought to have planets orbiting them.

Asteroid Threat to Earth

United Nations Focuses on

Exoplanets

oAn exoplanet is a planet that orbits another star within the Milky Way galaxy.
o The first exoplanets were discovered in 1992.

How Many Exoplanets?

oAs of today, NASA has confirmed 1,827 exoplanets
04,604 Kepler Candidates

Habitable Zone (HZ)

- The Circumstellar Habitable Zone (CHZ) is defined as the region around a star where water could exist on the surface of an Earth-like planet.
- The size and location of the CHZ change over time as a star evolves.

Asteroid Belt

Meteroids \& Meteors

oAs a meteroid passes through the atmosphere, it is heated by friction and burns, producing a streak of light called a meteor.

Barringer Crater, AZ

Barringer Crater, AZ

Kuiper Belt

Kuiper Belt

oLike the rocky asteroid belt, another group of bodies mostly made up of ice and rock is found outside the orbit of Neptune.
oEris and Pluto are two of many Kuiper belt objects.

Comets:

oComets come from the farthest limits of the solar system, the Oort cloud.
oComets are small, icy bodies that have highly eccentric orbits.

Comets:

oWhen a comet comes within 3 AU of the Sun, it begins to evaporate. It forms a head and one or more tails.
oThe head is surrounded by glowing gasses with a solid core.

Comets:

oThe tails form as gas and dust are pushed away from the comet by particles and radiation from the Sun.
oThis is why comets' tails always point away from the sun.

Periodic Comets:

oComets that repeatedly return to the inner solar system are called periodic comets.
oHalley's comet has a 76 year period. It appeared in 1985 and will return in 2061

Periodic Comets:

oComet Hale-Bopp showed up in the year 1997.
olt is calculated to have an orbital period of 2520-2533 years.
Olt will return around 4385

Science News:

oLunar Eclipse Saturday, April $4^{\text {th }}$ at 7:22 AM Maximum View

Planet Project

- Where does the planet get its name?
- Orbital Period
- Rotational Period
- Distance from the Sun (Astronomical Units)
- Moons: Does this planet have any moons?
- Unique Features
- Composition (Atmosphere, Surface, Interior)
- Exploration: Probes, satellites, ect...
o Other Important Information

Test

- Formation of our solar system from collapsing interstellar cloud
- The current model of the solar system
- General information about each planet
- Galileo, Copernicus, and Kepler
- Dwarf planets, asteroids, and comets.

Solar System:

1.The four inner planets of our solar system are:
A.Gas Giant Planets
B.Interplanetary Asteroids
C. Terrestrial Planets
D.Meteorites

Solar System:

1.The four inner planets of our solar system are:
A.Gas Giant Planets
B.Interplanetary Asteroids
C.
D.Meteorites

Solar System:

2. The closest planet to the sun is:
A.Venus
B.Mercury
C.Mars
D.Earth

Solar System:

3. Galileo discovered Jupitor's \qquad .
A.rings
B. 12 smaller satellites
C. 4 major satellites
D.the Great Red Spot

Solar System:

4. The form of hydrogen that has properties of both a liquid and a metal is
A. liquid metallic hydrogen.
B.magnetic hydrogen
C.liquid hydrogen
D.electric hydrogen

Solar System:

2. The closest planet to the sun is:
A.Venus
B.
C.Mars
D.Earth

Solar System:

3. Galileo discovered Jupitor's \qquad .
A.rings
B. 12 smaller satellites
C.
D.the Great Red Spot

Solar System:

4. The form of hydrogen that has properties of both a liquid and a metal is
A.
B. magnetic hydrogen
C.liquid hydrogen
D.electric hydrogen

Solar System:

5. Low, warm, dark-colored, sinking clouds in Jupiter's atmosphere are known as:
A.belts
B.the Great Red Spot
C.zones
D.rings

Solar System:

5. Low, warm, dark-colored, sinking clouds in Jupiter's atmosphere are known as: A.
B.the Great Red Spot
C.zones
D.rings

Solar System:

6. The Astroid Belt is found between which two planets:
A.Mercury and Venus
B.Mars and Jupiter
C.Saturn and Uranus
D.Earth and Mars

Solar System:

7. Which planet is furthest away from the sun?
A.Uranus
B.Jupiter
C. Saturn
D. Neptune

Solar System:

6. The Astroid Belt is found between which two planets:
A.Mercury and Venus
B.
C. Saturn and Uranus
D.Earth and Mars

Solar System:

7. Which planet is furthest away from the sun?
A.Uranus
B.Jupiter
C. Saturn
D.

Solar System:

8. Where do most of the comets that pass Earth originate?
A.The Astroid Belt
B. The Oort Cloud
C.The Inner Solar System
D.Black Holes

Solar System:

9. Who first proposed the heliocentric view of the solar system?
A.Copernicus
B. Galileo
C.Kepler
D.Newton

Solar System:

10.Identify the following planet:
A.Saturn
B.Jupiter
C.Uranus
D. Neptune

Solar System:

8. Where do most of the comets that pass Earth originate?
A.The Astroid Belt
B.
C. The Inner Solar System
D.Black Holes

Solar System:

9. Who first proposed the heliocentric view of the solar system?
A.
B. Galileo
C.Kepler
D.Newton

Solar System:

10.Identify the following planet:
A.Saturn
B.Jupiter
C.
D.Neptune

CH 28 Review:

1.Comets are bodies that are \qquad that orbit .
A. ice and rock, the Sun
B. helium gas, the Sun
C. icy, each planet
D. larger than Earth, Earth

CH 28 Review:

2. The inner four planets of our solar system are called the \qquad planets and the next four are called the \qquad planets
A. Gas giant, terrestrial
B. Rocky, gas-like
C.Hard, soft
D.Terrestrial, gas giant

CH 28 Review:

3. The objects that eventually formed planets by colliding and merging are called
A. stars
B. asteroids
C.planetesimals
D.solar nebula

CH 28 Review:

1.Comets are bodies that are \qquad that orbit
\qquad .
A. ice and rock, the Sun
B. helium gas, the Sun
C. icy, each planet
D. larger than Earth, Earth

CH 28 Review:

2. The inner four planets of our solar system are called the \qquad planets and the next four are called the \qquad planets
A. Gas giant, terrestrial
B. Rocky, gas-like
C.Hard, soft
D.Terrestrial, gas giant

CH 28 Review:

3. The objects that eventually formed planets by colliding and merging are called
A. stars
B. asteroids
C.planetesimals
D.solar nebula

CH 28 Review:

4. According to the table below, which is the largest terrestrial planet?

Planet	Orbital Radius, \mathbf{a} $(\mathbf{A U})$	Planetary Radius, \mathbf{r} $(\mathbf{k m})$	Planetary Mass, $\mathbf{m}(\mathbf{1 0} \mathbf{2 4}$ $\mathbf{k g})$
Mercury	0.387	2439.7	0.3302
Venus	0.723	6051.8	4.8685
Earth	1.0	6378.1	5.9736
Mars	1.524	3397	0.64185
Jupiter	5.204	71492	1898.6
Saturn	9.582	60268	568.46
Uranus	19.201	25559	86.832
Neptune	30.047	24764	102.43

CH 28 Review:

5. According to the table below, which planet is the smallest of the gas giants

Planet	Orbital Radius, \mathbf{a} $(\mathbf{A U})$	Planetary Radius, \mathbf{r} $\mathbf{(k m)}$	Planetary Mass, $\mathbf{m}(\mathbf{1 0 2 4}$ $\mathbf{k g})$
Mercury	0.387	2439.7	0.3302
Venus	0.723	6051.8	4.8685
Earth	1.0	6378.1	5.9736
Mars	1.524	3397	0.64185
Jupiter	5.204	71492	1898.6
Saturn	9.582	60268	568.46
Uranus	19.201	25559	86.832
Neptune	30.047	24764	102.43

CH 28 Review:

6. Which describes the average distance between the Earth and the Sun?
A. 1 Mile
B. 1 AU
C. 1 Parsec
D. 1 Light Year

CH 28 Review:

4. According to the table below, which is the largest terrestrial planet?

Planet	Orbital Radius, a (AU)	Planetary Radius, r (km)	Planetary Mass, m(10 $\mathbf{2 4}^{24}$ kg)
Mercury	0.387	2439.7	0.3302
Venus	0.723	6051.8	4.8685
Earth	1.0	6378.1	5.9736
Mars	1.524	3397	0.64185
Jupiter	5.204	71492	1898.6
Saturn	9.582	60268	568.46
Uranus	19.201	25559	86.832
Neptune	30.047	24764	102.43

CH 28 Review:

5. According to the table below, which planet is the smallest of the gas giants

Planet	Orbital Radius, \mathbf{a} $(\mathbf{A U})$	Planetary Radius, \mathbf{r} $\mathbf{(k m)}$	Planetary Mass, $\mathbf{m}\left(\mathbf{1 0}^{\mathbf{2 4}}\right.$ $\mathbf{k g})$
Mercury	0.387	2439.7	0.3302
Venus	0.723	6051.8	4.8685
Earth	1.0	6378.1	5.9736
Mars	1.524	3397	0.64185
Jupiter	5.204	71492	1898.6
Saturn	9.582	60268	568.46
Uranus	19.201	25559	86.832
Mentune	30.047	24764	102.43

CH 28 Review:

6. Which describes the average distance between the Earth and the Sun?
A. 1 Mile
B. 1 AU
C. 1 Parsec
D. 1 Light Year

CH 28 Review:

7. Where are most asteroids located?
A.Orbiting all planets
B.Between Mars and Jupiter
C. Outside of Pluto's Orbit
D. Between Earth and Venus

CH 28 Review:

7. Where are most asteroids located?
A.Orbiting all planets
B.Between Mars and Jupiter
C. Outside of Pluto's Orbit
D.Between Earth and Venus

CH 28 Review:

8. Why does Jupiter have a banded appearance?
A.due to its four moons
B. Its rings
C. The great red spot causes the bands
D.Flow patterns in its atmosphere

CH 28 Review:

9. In which direction does the tail of a comet point?
A. Towards the Sun
B. Away from the Sun
C. Towards its orbital direction
D.Away from its orbital direction

CH 28 Review:

8. Why does Jupiter have a banded appearance?
A.due to its four moons
B. Its rings
C. The great red spot causes the bands
D.Flow patterns in its atmosphere

CH 28 Review:

9. In which direction does the tail of a comet point?
A. Towards the Sun
B.Away from the Sun
C. Towards its orbital direction
D.Away from its orbital direction

CH 28 Review:

10. Which requirement distinguishes a planet from a dwarf planet?
A.Nearly spherical in shape
B. Orbits the Sun
C. Is not a satellite
D. Has no debris within its orbit

CH 28 Review:

10. Which requirement distinguishes a planet from a dwarf planet?
A. Nearly spherical in shape
B. Orbits the Sun
C.Is not a satellite
D. Has no debris within its orbit
